Skip to main content
  1. Posts/

First 3D observations of an exoplanet’s atmosphere reveal a unique climate

·9 mins·
Notaspampeanas
WASP-121b Tylos Puppis Exoplanets ESO Constellation Puppis
Notaspampeanas
Author
Notaspampeanas
Digging on curiosity and science.
Table of Contents

Astronomers have peered through the atmosphere of a planet beyond the Solar System, mapping its 3D structure for the first time. By combining all four telescope units of the European Southern Observatory’s Very Large Telescope (ESO’s VLT), they found powerful winds carrying chemical elements like iron and titanium, creating intricate weather patterns across the planet’s atmosphere. The discovery opens the door for detailed studies of the chemical makeup and weather of other alien worlds.

Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet. Credit: ESO/M. Kornmesser
Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet. Credit: ESO/M. Kornmesser

“This planet’s atmosphere behaves in ways that challenge our understanding of how weather works — not just on Earth, but on all planets. It feels like something out of science fiction,” says Julia Victoria Seidel, a researcher at the European Southern Observatory (ESO) in Chile and lead author of the study, published today in Nature.


The 3D structure of the atmosphere of the exoplanet Tylos (labeled) Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet. Credit: ESO/M. Kornmesser
The 3D structure of the atmosphere of the exoplanet Tylos (labeled) Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet. Credit: ESO/M. Kornmesser


The planet, WASP-121b (also known as Tylos), is some 900 light-years away in the constellation Puppis. It’s an ultra-hot Jupiter, a gas giant orbiting its host star so closely that a year there lasts only about 30 Earth hours. Moreover, one side of the planet is scorching, as it is always facing the star, while the other side is much cooler.


Structure and motion of the atmosphere of the exoplanet Tylos
#

This diagram shows the structure and motion of the atmosphere of the exoplanet Tylos (WASP-121b). The exoplanet is shown from above in this figure, looking at one of its poles. The planet rotates counter-clockwise, in such a way that it always shows the same side to its parent star, so it’s always day on one half of the planet and night on the other. The transition between night and day is the “morning side” while the “evening side” represents the transition between day and night; its morning side is to the right and its evening side to the left. As the planet crosses in front of its host star, atoms in the planet’s atmosphere absorb specific colours or wavelengths of the star’s light, which can be measured with a spectrograph. From this data –– obtained in this case with the ESPRESSO instrument on ESO’s Very Large Telescope –– astronomers can reconstruct the composition and velocity of different layers in the atmosphere. The deepest layer is a wind of iron that blows away from the point of the planet where the star is directly overhead. Above this layer there is a very fast jet of sodium that moves faster than the planet rotates. This jet actually accelerates as it moves from the morning side to the evening side of the planet. Finally, there is an upper layer of hydrogen wind blowing outwards. This hydrogen layer overlaps with the sodium jet below it. Credit: ESO/M. Kornmesser
This diagram shows the structure and motion of the atmosphere of the exoplanet Tylos (WASP-121b). The exoplanet is shown from above in this figure, looking at one of its poles. The planet rotates counter-clockwise, in such a way that it always shows the same side to its parent star, so it’s always day on one half of the planet and night on the other. The transition between night and day is the “morning side” while the “evening side” represents the transition between day and night; its morning side is to the right and its evening side to the left. As the planet crosses in front of its host star, atoms in the planet’s atmosphere absorb specific colours or wavelengths of the star’s light, which can be measured with a spectrograph. From this data –– obtained in this case with the ESPRESSO instrument on ESO’s Very Large Telescope –– astronomers can reconstruct the composition and velocity of different layers in the atmosphere. The deepest layer is a wind of iron that blows away from the point of the planet where the star is directly overhead. Above this layer there is a very fast jet of sodium that moves faster than the planet rotates. This jet actually accelerates as it moves from the morning side to the evening side of the planet. Finally, there is an upper layer of hydrogen wind blowing outwards. This hydrogen layer overlaps with the sodium jet below it. Credit: ESO/M. Kornmesser


The team has now probed deep inside Tylos’s atmosphere and revealed distinct winds in separate layers, forming a map of the atmosphere’s 3D structure. It’s the first time astronomers have been able to study the atmosphere of a planet outside our Solar System in such depth and detail.

First 3D observations of an exoplanet’s atmosphere
#


Astronomers have revealed for the first time the 3D structure of an exoplanet’s atmosphere. Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away. Astronomers were able to differentiate three different layers in its atmosphere, where winds carry elements like hydrogen, sodium, iron at extreme speeds, creating weather patterns never seen before. This was possible by combining all four telescope units of ESO’s Very Large Telescope in Chile. Credit: ESO. Music: Stellardrone – I Don‘t Belong Here. Script: A. Izquierdo Lopez, S. Bromilow. Footage and photos: ESO, L. Calçada, M. Kornmesser, D. Gasparri, C. Malin. Editing: A. Tsaousis

“What we found was surprising: a jet stream rotates material around the planet’s equator, while a separate flow at lower levels of the atmosphere moves gas from the hot side to the cooler side. This kind of climate has never been seen before on any planet,” says Seidel, who is also a researcher at the Lagrange Laboratory, part of the Observatoire de la Côte d’Azur, in France. The observed jet stream spans half of the planet, gaining speed and violently churning the atmosphere high up in the sky as it crosses the hot side of Tylos. “Even the strongest hurricanes in the Solar System seem calm in comparison,” she adds.

To uncover the 3D structure of the exoplanet’s atmosphere, the team used the ESPRESSO instrument on ESO’s VLT to combine the light of its four large telescope units into a single signal. This combined mode of the VLT collects four times as much light as an individual telescope unit, revealing fainter details. By observing the planet for one full transit in front of its host star, ESPRESSO was able to detect signatures of multiple chemical elements, probing different layers of the atmosphere as a result.

“The VLT enabled us to probe three different layers of the exoplanet’s atmosphere in one fell swoop,” says study co-author Leonardo A. dos Santos, an assistant astronomer at the Space Telescope Science Institute in Baltimore, United States. The team tracked the movements of iron, sodium and hydrogen, which allowed them to trace winds in the deep, mid and shallow layers of the planet’s atmosphere, respectively. “It’s the kind of observation that is very challenging to do with space telescopes, highlighting the importance of ground-based observations of exoplanets,” he adds.

The different layers of the atmosphere on WASP-121b
#

Interestingly, the observations also revealed the presence of titanium just below the jet stream, as highlighted in a companion study published in Astronomy and Astrophysics. This was another surprise since previous observations of the planet had shown this element to be absent, possibly because it’s hidden deep in the atmosphere.

“It’s truly mind-blowing that we’re able to study details like the chemical makeup and weather patterns of a planet at such a vast distance,” says Bibiana Prinoth, a PhD student at Lund University, Sweden, and ESO, who led the companion study and is a co-author of the Nature paper.

To uncover the atmosphere of smaller, Earth-like planets, though, larger telescopes will be needed. They will include ESO’s Extremely Large Telescope (ELT), which is currently under construction in Chile’s Atacama Desert, and its ANDES instrument. “The ELT will be a game-changer for studying exoplanet atmospheres,” says Prinoth. “This experience makes me feel like we’re on the verge of uncovering incredible things we can only dream about now.”

  • The paper “Vertical structure of an exoplanet’s atmospheric jet stream” was published in Nature(doi:10.1038/s41586-025-08664-1).

The team is composed of: Julia V. Seidel (European Southern Observatory, Santiago, Chile [ESO Chile]; Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Université Côte d’Azur, Nice, France [Lagrange]), Bibiana Prinoth (ESO Chile and Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Lund, Sweden [ULund]), Lorenzo Pino(INAF-Osservatorio Astrofisico di Arcetri, Florence, Italy), Leonardo A. dos Santos (Space Telescope Science Institute, Baltimore, USA, Johns Hopkins University, Baltimore, USA), Hritam Chakraborty (Observatoire de Genève, Département d’Astronomie, Université de Genève, Versoix, Switzerland [UNIGE]), Vivien Parmentier (Lagrange), Elyar Sedaghati (ESO Chile), Joost P. Wardenier (Département de Physique, Trottier Institute for Research on Exoplanets [IREx], Université de Montréal, Canada), Casper Farret Jentink (UNIGE), Maria Rosa Zapatero Osorio (Centro de Astrobiología, CSIC-INTA, Madrid, Spain), Romain Allart (IREx), David Ehrenreich (UNIGE), Monika Lendl (UNIGE), Giulia Roccetti (European Southern Observatory, Garching bei München, Germany; Meteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany), Yuri Damasceno (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Porto, Portugal [IA-CAUP], Departamento de Fisica e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal [FCUP]; ESO Chile), Vincent Bourrier (UNIGE), Jorge Lillo-Box (Centro de Astrobiología (CAB); CSIC-INTA, Madrid, Spain), H. Jens Hoeijmakers (ULund), Enric Pallé (Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain [IAC]; Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain [IAC-ULL]), Nuno Santos (IA-CAUP and FCUP), Alejandro Suàrez Mascareño (IAC and IAC-ULL), Sergio G. Sousa (IA-CAUP), Hugo M. Tabernero (Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Universidad Complutense de Madrid, Spain), and Francesco A. Pepe (UNIGE).

The companion research, uncovering the presence of titanium, was published in the journal Astronomy & Astrophysics in a paper titled “Titanium chemistry of WASP-121 b with ESPRESSO in 4-UT mode” (doi: 10.1051/0004-6361/202452405)

The team behind this paper is composed of: Bibiana Prinoth (European Southern Observatory, Santiago, Chile [ESO Chile] and Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Lund, Sweden [ULund]), Julia V. Seidel (ESO Chile; Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Université Côte d’Azur, Nice, France [Lagrange]), H. Jens Hoeijmakers (ULund), Brett M. Morris (Space Telescope Science Institute, Baltimore, USA), Martina Baratella (ESO Chile), Nicholas W. Borsato (ULund, School of Mathematical and physical Sciences, Macquarie University, Sydney, Australia), Yuri Damasceno (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Porto, Portugal [IA-CAUP], Departamento de Fisica e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal [FCUP]; ESO Chile), Vivien Parmentier (Lagrange), Daniel Kitzmann (University of Bern, Physics Institute, Division of Space Research & Planetary Sciences, Bern, Switzerland), Elyar Sedaghati (ESO Chile), Lorenzo Pino (INAF-Osservatorio Astrofisico di Arcetri, Florence, Italy), Francesco Borsa (INAF-Osservatorio Astronomico di Brera, Merate, Italy), Romain Allart (Département de Physique, Trottier Institute for Research on Exoplanets [IREx], Université de Montréal, Canada), Nuno Santos (IA-CAUP and FCUP), Michal Steiner (Observatoire de l’Université de Genève, Versoix, Switzerland), Alejandro Suàrez Mascareño (Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain), Hugo M. Tabernero (Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Universidad Complutense de Madrid, Spain) and Maria Rosa Zapatero Osorio (Centro de Astrobiologia, CSIC-INTA, Madrid, Spain).

Related

Developing high-performance rechargeable lithium-hydrogen gas batteries
·3 mins
Notaspampeanas
Rechargeable Batteries Lithium-Hydrogen Gas Batteries Hydrogen Energy
Animals as architects of the earth: first global study reveals their surprising impact
·3 mins
Notaspampeanas
Geomorfology Animal Research Environmental Methods Endemic Species Wetlands Ecological Processes Biodiversity Conservation Geography
The Biology of Face and Head Formation
·7 mins
Notaspampeanas
Faces Craniofacial Disorders Heads Biology Birth Defects Cleft Lip Palate Craniosynostosis
Liquid biopsies may change the way we find and treat cancer
·11 mins
Notaspampeanas
Cancer Liquid Biopsies Signs of Cancer Genoma Circulating Tumor DNA Copy Number Alteration
Dessert stomach emerges in the brain
·5 mins
Notaspampeanas
Sugars Human Brain Opioid Receptors Neural Pathways Metabolic Networks Signaling Networks Obesity Foods
A Pair of Hearts, from space, in Valentine’s day
·3 mins
Notaspampeanas
Lake Saint Clair Valentine’s Day Salinas Las Barrancas Landsat OLI-2 Astronauts International Space Station As Two Hearts